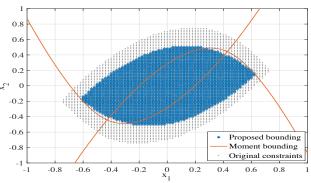


PoBO: A Polynomial Bounding Method for Chance-Constrained Yield-Aware Optimization of Photonic ICs

Zichang He and Zheng Zhang

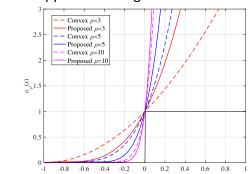

What limits the standard yield optimization?

Chance-constrained yield-aware optimization

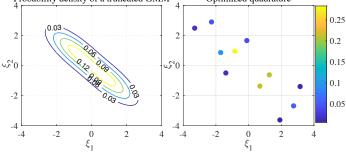
$$\begin{split} \max_{\mathbf{x} \in \mathbf{X}} & \mathbb{E}_{\boldsymbol{\xi}}[f(\mathbf{x}, \boldsymbol{\xi})] \\ \text{s.t.} & \mathbb{P}_{\boldsymbol{\xi}}(y_i(\mathbf{x}, \boldsymbol{\xi}) \leq u_i) \geq 1 - \epsilon_i, \forall i = [n]. \end{split}$$

Optimizing the design metric while certifying the guarantee on probabilistic yield constraints

Two key components:


- Performance modeling
- Tractable stochastic programming algorithm

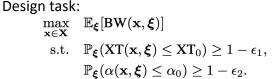
Our PoBO solution


 An optimal polynomial kinship function to upper bound the probabilistic constraints

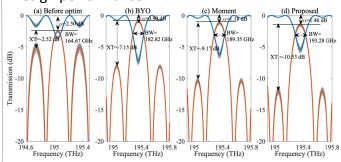
$$\mathbb{P}_{\boldsymbol{\xi}}(y_i(\mathbf{x},\boldsymbol{\xi}) > u_i) \le \int_{\boldsymbol{\Xi}} \kappa_{\rho}(y_i(\mathbf{x},\boldsymbol{\xi}) - u_i)\mu(\boldsymbol{\xi})d\boldsymbol{\xi} \le \epsilon$$

 $\kappa(\cdot)$ solved by semi-definite programming, aiming to make the upper bound tight


Efficient numerical implementation
Probability density of a truncated GMM
Optimized quadrature



Numerical integration by quadrature points, free-lunch from performance modeling


 Globally optimal design via polynomial optimization solver

Case study on Mach-Zehnder interferometer

Design performance:

Better performance + smaller constraint gap Δ

2	Risk ϵ	Method	E[BW]	Δ ₁ (%)	Δ ₂ (%)	Yield (%)	# Simulation
5	0.07	Moment [2]	187.02	7.53	7.53	100	35
		PoBO	192.1	7.53	7.2	99.7	35
)5	0.1	Moment [2]	189.35	11.11	11.11	100	35
		PoBO	193.28	11.11	4.22	93.8	35
	N/A	BYO [3]	182.82	N/A	N/A	100	2020

Please contact Zichang at zichanghe@ucsb.edu

Reference

[1] This work has been accepted by TCAD, arXiv: 2107.12593[2] Cui et al. TCAD 2020[3] Wang et al. DAC 2017